Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tạ Thu Hương

Bài 3 : Chứng minh
a, ( 3n - 1 )^2 - 4 chia hết cho 3 với mọi số tự nhiên n

b, 100 - ( 7n + 3 )^2 chia hết cho 7 với mọi số tự nhiên n
c, ( 3n + 1 )^2 - 25 chia hết cho 3 với mọi số tự nhiên n
d, ( 4n + 1 )^2 - 9 chia hết cho 8 với mọi số tự nhiên n
Giúp mk vs ạ mk đang cần gấp

Nguyễn Lê Phước Thịnh
2 tháng 8 2020 lúc 18:45

Bài 3:

a) Ta có: \(\left(3n-1\right)^2-4\)

\(=\left(3n-1-2\right)\left(3n-1+2\right)\)

\(=\left(3n-3\right)\left(3n+1\right)\)

\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)

b) Ta có: \(100-\left(7n+3\right)^2\)

\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)

\(=\left(10-7n-3\right)\left(10+7n+3\right)\)

\(=\left(7-7n\right)\left(13+7n\right)\)

\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)

c) Ta có: \(\left(3n+1\right)^2-25\)

\(=\left(3n+1-5\right)\left(3n+1+5\right)\)

\(=\left(3n-4\right)\left(3n+6\right)\)

\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)

d) Ta có: \(\left(4n+1\right)^2-9\)

\(=\left(4n+1-3\right)\left(4n+1+3\right)\)

\(=\left(4n-2\right)\left(4n+4\right)\)

\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)

\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)


Các câu hỏi tương tự
Xin giấu tên
Xem chi tiết
erza sarlet
Xem chi tiết
Lương Đại
Xem chi tiết
Phương Uyên
Xem chi tiết
lê trang
Xem chi tiết
Núi non tình yêu thuần k...
Xem chi tiết
Nguyễn Hoàng Nam
Xem chi tiết
๖ۣۜHòลηɠ•Ŧửツ
Xem chi tiết
kẻ giấu tên
Xem chi tiết