1.Cho 🔺️EMN cân tại E ( Ê < 90° ) , các đường cao MA, NB cắt nhau tại I . Tia EI cắt MN tại H.
a, CM : 🔺️AMN = 🔺️BNM
b, CM : EH là đường trung tuyến của 🔺️EMN
c, Tính độ dài đoạn thẳng MA biết AE= 3cm , AN= 2cm . ( Sử dụng định lí Py-ta-go )
d, CM : I cách đều 3 cạnh của 🔺️ABH
): Cho DABC cân tại A; đường cao AH và đường trung tuyến BK cắt nhau tại G. Tia CG cắt cạnh AB tại điểm I
a) Chứng minh: G là trọng tâm của . Chứng minh IA = IB
b) Chứng minh:
c) Biết AH = 18cm ; BC = 16cm. Tính độ dài đoạn thẳng GI.
d) Chứng minh .
Cho tam giác DEF vuông tại D có DE= 3cm, EF= 5cm
a) Tính độ dài cạnh DE và so sánh các góc của tam giác DEF
b) Trên tia đối của tia DE lấy điểm K sao cho D là trung điểm của đoạn thẳng EK. Chứng minh tam giác EKF cân
c) Gọi I là trung điểm của cạnh EF, đường thẳng KI cắt cạnh DF tại G. Tính GF
d) Đường trung trực d của đoạn thẳng DF cắt đường thẳng KF tại M. Chứng minh ba điểm E, G, M thẳng hàng
: Cho tam giác cân AMN có góc MAN = 120o . Vẽ đường cao AH ( H∈ MN).
a) Chứng minh rằng AH là tia phân giác của góc MAM.
b) Kẻ HD vuông góc với AM ( D ∈ AM), kẻ HE vuông góc với AN ( E ∈AN). Chứng minh rằng ΔADE cân và DE//MN.
c) Chứng minh rằng Δ HDE đều.
d) Đường vuông góc với MN kẻ từ N cắt MA tại I. Tính độ dài của cạnh AI biết NI = 10cm
Cho tam giác ABC vuông tại A có AB=3cm, AC=4cm. Gọi Điện là điểm trên cạnh BC sao cho BD=3cm. Đường thẳng vuông góc với BC tại Đây cắt cạnh AC tại M, cắt tia BA tại N.
1) Chứng minh AM=DM.
2) Chứng minh tam giác MCN cân.
3) Gọi K là giao điểm của BM và CN. Chứng minh rằng BK là đường trung trực của đoạn thẳng CN.
4) Tính độ dài đoạn thẳng BK và chứng minh rằng góc NIC=90° với I là trung điểm của BK.
Cho tam giác vuông ABC ( góc A = 90 độ ) , đường cao AH , trung tuyến AM . Trên tia đối tia MA lấy điểm D sao cho DM = MA . Trên tia đối CD lấy điểm I sao cho CI = CA , qua I vẽ đường thẳng song song với AC cắt đường AH tại E . Chứng minh : AE = BC
Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH AC ( H AC); CK AB ( K AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.
Giúp mình với ạ, mik đang cần gấp
1.Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D, E, F là hình chiếu của I xuống AB, AC, BC.
a) Chứng minh rằng AD=AE
b) Tính độ dài các đoạn thẳng AD, AE nếu biết AB = 8cm, AC = 15cm
c) Trong trường hợp tam giác ABC cân tại A, hãy chứng minh rằng tam giác DEF là tam giác cân
2.Cho tam giác ABC có AB<AC. Trên tia đối của tia BC lấy điểm M sao cho BM=BA, trên tia đối của tia CB lấy điểm N sao cho CN=CA
a) Hãy so sánh các góc AMB và ANC
b) Hãy so sánh độ dài các đoạn thẳng AM và AN
c) Gọi H là trung điểm của AM, K là trung điểm của AN. Hai đường thẳng BH và CK cắt nhau tại I. Chứng minh I là trực tâm của tam giác AMN
Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I
a) Chứng minh tam giác ABD = tam giác ACE
b) Chứng minh I là trung điểm của BC
c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH
d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF
Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K
a) Tính độ dài cạnh BC
b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC
c) Chứng minh AC = DK
d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân
Các bạn làm hộ mình nha, mình cần gấp lắm