1,\(A=2x^2-6x+7\)
\(=2\left(x^2-3x+\frac{9}{4}\right)+\frac{5}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" khi \(x=\frac{3}{2}\)
2,\(B=\frac{2x^2-6x+5}{x^2-2x+1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow Bx^2-2Bx+B=2x^2-6x+5\)
\(\Leftrightarrow x^2\left(B-2\right)+2x\left(3-B\right)+B-5=0\)(1)
*Với B = 2 thì \(\left(1\right)\Leftrightarrow x^2\left(2-2\right)+2x\left(3-2\right)+2-5=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\left(TmĐKXĐ\right)\)
*Với \(B\ne2\)thì pt (1) là pt bậc 2 ẩn x tham số B
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(3-B\right)^2-\left(B-2\right)\left(B-5\right)\ge0\)
\(\Leftrightarrow9-6B+B^2-B^2+7B-10\ge0\)
\(\Leftrightarrow B\ge1\)
Dấu "=" xảy ra khi \(\left(1\right)\Leftrightarrow-x^2+4x-4=0\)
\(\Leftrightarrow-\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)
Thấy 1 < 2 nên BMin = 1<=> x = 2
Vậy ....
A=(9x2-6x+1)+(7x2+7)-1=(3x2+1)2+7(x2+7)-1
Vì: (3x2+1)2\(\ge\)0 và 7(x2+7)\(\ge\)0
Nên:A\(\ge\) -1
B=\(\frac{A-2}{\left(x-1\right)^2}\)\(\ge\) -3