Cho tam giác ABCD cân tại A. Đường thẳng vuông góc với BC tại B cắt đường thẳng vuông góc với AC tại C ở D. Vẽ BE vuông góc CD tại E. Gọi M là giao điểm của Ad và BE. Vẽ EN vuông góc BD tại N.
CMR:
a)MN//AB
b)M là trung điểm của BE
Cho tam giác ABCD cân tại A. Đường thẳng vuông góc với BC tại B cắt đường thẳng vuông góc với AC tại C ở D. Vẽ BE vuông góc CD tại E. Gọi M là giao điểm của Ad và BE. Vẽ EN vuông góc BD tại N.
CMR:
a)MN//AB
b)M là trung điểm của BE
Cho tam giác ABC cân tại A. Đường thẳng vuông góc với BC tại B cắt đường thẳng vuông góc với AC tại C ở D. Vẽ BE ^ CD tại E, gọi M là giao điểm của AD và BE. Vẽ EN ^ BD tại N. Chứng minh rằng :
a) MN // AB. b) M là trung điểm của BE.
Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB, AC lấy điểm D và E sao cho AD=AE. Qua D vẽ đường thẳng vuông góc với BE,cắt BC tại K. Qua A vẽ đường thẳng vuông góc với BE, cắt BC ở H. Gọi M là giao điểm của DK và AC. Chứng minh rằng
a) Tam giác BAE = tam giác CAD
b) MCD là tam giác cân
c) KH = HC
cho tam giác ABC vuông cân tại A trên cạnh AB,AC lấy các điểm D và E sao cho AD=AE. qua D vẽ đường thẳng vuông góc với BE cắt BC ở K qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. gọi M là giao điểm của DK và AC. chứng minh
a/ tam giác BAE = tam giác CAD
b/chứng minh tam giác MDC cân
c/ HK=HC
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho tam giác ABC vuông cân tại A. Trên các cạnh AB,AC lần lượt lấy các điểm D,E sao cho AD=AE. Đường thẳng qua D vuông góc với BE cắt BC tại I. Đường thẳng qua A vuông góc vói BE cắt BC tại K. Gọi M là giao điểm của AK và CD
a)Chứng minh rằng tam giác ABE=tam giác ACD
b) Chứng minh rằng tam giác MAC cân
c) Chứng minh rằng M là trung điểm CD, K là trung điểm của IC
d) Gọi K là giao điểm của DK và IM, MK cắt GC tại F. Chứng minh rằng FM=FK
Cho tam giác ABC vuông cân tại A. Trên các cạnh AB,AC lần lượt lấy các điểm D,E sao cho AD=AE. Đường thẳng qua D vuông góc với BE cắt BC tại I. Đường thẳng qua A vuông góc vói BE cắt BC tại K. Gọi M là giao điểm của AK và CD
a)Chứng minh rằng tam giác ABE=tam giác ACD
b) Chứng minh rằng tam giác MAC cân
c) Chứng minh rằng M là trung điểm CD, K là trung điểm của IC
d) Gọi G là giao điểm của DK và IM, MK cắt GC tại F. Chứng minh rằng FM=FK