Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Thanh Thuận

Bài 2. Cho phương trình: x2 - mx + m - 1 = 0

a. Chứng tỏ phương trình luôn có nghiệm với mọi giá trị của m

b. Tìm m để phương trình có 2 nghiệm x1,x2 thỏa x12 - x22 + x- x= 0

Nguyễn Linh Chi
1 tháng 4 2019 lúc 11:50

Bài 2. \(x^2-mx+m-1=0\)(1)

a) Phương trình (1) có: \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0,\forall m\)

Suy ra phương trình luôn có nghiệm với mọi m

b) Áp dụng định lí Vi ét ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

Ta có: \(x_1^2-x_2^2+x_1+x_2=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)+\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=0\)

<=>\(\orbr{\begin{cases}x_1+x_2=0\\x_1-x_2+1=0\end{cases}}\)

+) Với \(x_1+x_2=0\Leftrightarrow m=0\)(tm)

+) Với \(x_1-x_2+1=0\Leftrightarrow x_1=-1+x_2\)

Ta có \(x_1+x_2=m\Leftrightarrow-1+x_2+x_2=m\Leftrightarrow x_2=\frac{m+1}{2}\)

=> \(x_1=-1+x_2=-1+\frac{m+1}{2}=\frac{m-1}{2}\)

ta lại có: \(x_1.x_2=m-1\Leftrightarrow\frac{m+1}{2}.\frac{m-1}{2}=m-1\Leftrightarrow\orbr{\begin{cases}m-1=0\\\frac{m+1}{4}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)(TM)

Vậy 

Nguyễn Linh Chi
1 tháng 4 2019 lúc 15:21

Sửa lại :

2b) 

\(x_1^2-x_2^2+x_1-x_2=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x_1-x_2=0\\x_1+x_2+1=0\end{cases}}\)

Với \(x_1-x_2=0\Leftrightarrow x_1=x_2\)

Ta có:\(x_1+x_2=m\Leftrightarrow2x_1=m\Leftrightarrow x_1=x_2=\frac{m}{2}\)

\(x_1.x_2=m-1\Leftrightarrow\frac{m}{2}.\frac{m}{2}=m-1\Leftrightarrow m^2=4m-4\Leftrightarrow\left(m-2\right)^2=0\Leftrightarrow m=2\)

+) Với \(x_1+x_2+1=0\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

Vậy m=-1 hoặc m=2


Các câu hỏi tương tự
Tri Truong
Xem chi tiết
Tri Truong
Xem chi tiết
Lâm Đặng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
Lan Ngọc
Xem chi tiết
Mina
Xem chi tiết
_QuyhNgocTramm
Xem chi tiết
Nguyễn Thị My
Xem chi tiết
NO ENGLISH BRO
Xem chi tiết