ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
mà xyz = 30 => 2k.3k.5k = 30 => 30.k3 = 30 => k3 = 1 => k = 1
=> x = 2k => x = 2
y = 3k => y = 3
z = 5k => z = 5
KL:...
x : 2 = y : 3 = z : 5 và x+ y+ z = 30
x = 6 : 2 = 3
y = 9 : 3 = 3
z = 15 : 5 = 3
6 : 2 = 9 : 3 = 15 : 5
hok tốt
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Leftrightarrow x=2k;y=3k;z=5k\)
Có \(xyz=30\Leftrightarrow2k.3k.5k=30\)
\(\Rightarrow30k^3=30\)
\(\Rightarrow k=1\)
\(\Rightarrow x=1.2=2\)
\(y=1.3=3\)
\(z=1.5=5\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow x=2k,y=3k,z=5k\)
Ta có: \(xyz=2k.3k.5k=30k^3=30\Rightarrow k^3=1\Rightarrow k=1\)
=> x=2,b=3,c=5
Ta có: \(x:2=y:3=z:5\)
nên \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
suy ra: \(\left(\frac{x}{2}\right)^3=\frac{x}{2}.\frac{y}{3}.\frac{z}{5}\)
do đó\(\frac{x^3}{8}=\frac{x.y.z}{2.3.5}\)
nên \(\frac{x^3}{8}=\frac{30}{30}=1\)
\(\Rightarrow x=2\)hoặc \(x=-2\)
Với x = 2
Ta có: \(\frac{2}{2}=\frac{y}{3}=\frac{z}{5}\)
nên \(y=3;z=5\)
Với x = -2
Ta có: \(\frac{-2}{2}=\frac{y}{3}=\frac{z}{5}\)
nên \(y=-3;z=-5\)
Vậy: Với x = 2 thì \(y=3;z=5\)
Với x = 2 thì \(y=-3;z=-5\)