=>3A=1.2.3+2.3.4+...+n(n+1)3
=>3A=1.2.3+2.3(4-1)+...+n(n+1)[(n+2)-(n-1)]
=>3A=1.2.3+(2.3.4-1.2.3)+...+[n(n+1)(n+2)-(n-1)n(n+1)]
=>3A=n(n+1)(n+2)
=>A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
=>3A=1.2.3+2.3.4+...+n(n+1)3
=>3A=1.2.3+2.3(4-1)+...+n(n+1)[(n+2)-(n-1)]
=>3A=1.2.3+(2.3.4-1.2.3)+...+[n(n+1)(n+2)-(n-1)n(n+1)]
=>3A=n(n+1)(n+2)
=>A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Tìm giá trị tự nhiên nhỏ nhất để bất đẳng thức sau đúng:
\(\frac{2.3}{1.2}+\frac{3.4}{2.3}+\frac{4.5}{3.4}+...+\frac{n\left(n+1\right)}{\left(n-1\right)n}>\frac{1989}{2013}\)
Tính 1/1.2+1/2.3+1/3.4+1/4.5+...+1/2009.2010
tính A 1.22+2.32+3.42+......+99.1002
I.Tìm x, biết :
a) -(7/4) x (33/12 + 3333/2020 + 333333/303030 + 33333333/42424242)=22
b) 137x137x chia hết cho 13
II. So sánh :
a)A= 1/2.3/4.5/6. ... . 99/100 và B= 2/3.4/5.6/7. ... . 100/101
b) Cho : A=1/1.2+1/3.4+1/5.6+...+1/59.60
B=1/31+1/32+1/33+...+1/60
Hãy so sánh A và B ?
III. Cho các góc nhọn AOB và AOC có số đo theo thứ tự bằng 80o và 40o. Vẽ tia OE nằm giữa hai tia OA,OB sao cho BOE=60o. Tia OE là tia phân giác của góc nào ? Vì sao ?
IV.Tìm số nguyên n sao cho C= 2n+11 / n-1 cũng là số nguyên
V.Biết rằng số tự nhiên n chỉ có đúng 3 ước số. Hãy chững tỏ rằng số tự nhiên n đó là một số chính phương.
VI.Tìm các số tự nhiên x,y thỏa mãn x^2+x-89=5^y


1.2+2.3+3.4+....+98.99
Gửi : Nguyễn Huy Thắng ( Quy nạp )
CMR : 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Giải :
Đặt biểu thức trên là (*)
Với n = 1 Thì (*) \(\Leftrightarrow1.2=\frac{1.2.3}{3}\) ( Đúng )
Giả sử với (*) đúng với n=K
=> (*) <=> 1.2+2.3+...+k.(k+1)=\(.\frac{k.\left(k+1\right)\left(k+2\right)}{3}\)
Ta phải chứng minh (*) cùng đúng với 2=k+1
thật vậy với n=k+1
=>(*) <=> 1.2+2.3+...+k.(k+1)+(k+1).(k+2)=\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k.\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right).\left(k+2\right)=\frac{\left(k+1\right).\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k}{3}+1=\frac{k+3}{3}\Leftrightarrow\frac{k}{3}+1=\frac{k}{3}+1\)( Đúng )
=> (*) đúng với n = k+1
Vậy (*) đúng với mọi n thuộc N*
Sai hay đúng vậy :)
cho đa thức f=1.2+2.3+3.4+...+x(x+1) tìm x để f(x)=o
m.n dúp mk nha. nhanh lên nhé, mk đang cần gấp!
chứng minh rằng: \(\frac{1}{\sqrt{1.2}}+\frac{1}{\sqrt{2.3}}+\frac{1}{\sqrt{3.4}}+...+\frac{1}{\sqrt{99.100}}=9\)
Nếu đề sai? chứng minh vì sao sai?
Kí hiệu [a] là phần nguyên của a
CMR: với mọi n nguyên dương ta luôn có
\(\left[\frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}\right]=n\)