Cho tam giác ABC, kéo dài AB một đoạn BK = BA, trên tia đối của tia BC lấy 1 điểm H sao cho HB = BC.
a, Chứng minh tam giác KBH = tam giác ABC
b, Chứng minh AH = CK và AH // CK
c, Qua B vẽ 1 đường thẳng cắt AH tại D, cắt CK tại E. Chứng minh BD = BE.
Cho tam giác ABC, kéo dài AB một đoạn BK=BA, trên tia đối của tia BC lấy một điểm H sao cho HB=BC
a) Chứng mình tam giác KBH= tam giác ABC
b) Chứng minh AH=CK và AH//CK
c) Qua B vẽ một đường thẳng cắt AH tại D, cắt CK tại E. Chứng minh BD=BE
Cho tg ABC ,kéo dài AB một đoạn BK=BA,trên tia đối của BC lấy một điểm H sao cho HB=BC
a,Chứng minh tg KBH=tg ABC
b,Chứng minh AH=CK và AH//CK
c,Qua B vẽ 1 đường thẳng cắt AH tại D,cắt Ck tại E.Chứng minh BD=BE
Cho tam giác ABC, kéo dài AB một đoạn BK = BA, trên tia đối của tia BC lấy một điểm H sao cho HB = BCoca
a) Tính số đo góc ACD
b) Chứng minh EC = EC
c) Qua B vẽ một đường thẳng cắt AH tại D, cắt CK tại E. Chứng minh BD = BE
Cho tam giác ABC vuông tại A (AB<AC). Đường cao AH; trên tia HC lấy D sao cho HB=HD.
a) Chứng minh tam giác ABH= tam giác ADH
b) Trên tia đối của tia HA lấy E sao cho HA=HE. Chứng minh tam giác DEA cân
c) Chứng minh BC-BD>AC-AB.
d) Kẻ CK vuông với AD tại K. Chứng minh AH; BE; CK đồng quy
cho tam giác abc cân tại A ,kẻ AH vuông góc với bc tại h có BC=18 cm,AH=12cm. a) tính độ dài AB, Chu vi của tam giác ABC. b) trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao choBM =CN. Chứng minh tam giác AMN câm. c) TừB kẻ BI Vuông góc với AM tại I , kẻ CK vuông góc với AN tại K . Chứng minh IK// BC. d) IB cắt CK kéo dài tạiO . Chứng minh A,O,H thẳng hàng
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12
cm và HC=16 cm. Tính chu vi tam giác ABC.
Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NA
vuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)
a) Chứng minh: NA = NB.
b) Tam giác OAB là tam giác gì? Vì sao?
c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.
Chứng minh: ND = NE.
d) Chứng minh ON ⊥ DE
Bài 4: Cho tam giác ABC cân tại A, Kẻ AH⊥BC (H ∈ BC)
a) Chứng minh góc ∠BAH = ∠CAH
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC.
c) Kẻ HE ⊥ AB, HD ⊥ AC . Chứng minh AE = AD.
d) Chứng minh ED // BC.
Bài 5: (3,5 điểm)
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh ∆BMC cân.
c) Chứng minh AB + NC > 2.DA.
Bài 6: (3,5 điểm)
Cho ∆ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D,
DN⊥BC tại N.
a) Chứng minh ∆ABD = ∆NBD.
3
b) Gọi K là giao điểm của hai đường thẳng BA và ND. Chứng minh ∆BKC cân.
Vẽ EH ⊥BC tại H. Chứng minh BC + AH > EK + AB.
Bài 7: (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài đoạn BC.
b) Vẽ BCAH tại H. Trên HC lấy D sao cho HD = HB.
Chứng minh: AB = AD.
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ACED .
d) Chứng minh BD < AE.
Bài 5: (3 điểm) Cho ΔABC vuông tại A, kẻ phân giác BD của Bˆ (D thuộc AC), kẻ
BDAH (H thuộc BD), AH cắt BC tại E.
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: BCED .
c) Chứng minh: AD < DC.
d) Kẻ BCAK (K thuộc BC). Chứng minh: AE là phân giác của KAˆC .
Bài 4: (3,5 điểm) Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC > 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM
3
2
AK
. Gọi N là giao điểm của
CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.
giúp mk với
Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD=BC và AB+BC >BD
c) vẽ AH vuông BD tại H, vẽ CK vuông BD Tại K. Chứng minh AH=CK và AH+CK <AC
Nhớ vẽ hình nha mk sẽ like cho bạn trả lời đầu tiên