a, để phân số trên là số nguyên thì a^2+a+3 chia hết cho a+1
Mà a^2+a = a.(a+1) chia hết cho a+1
=> 3 chia hết cho a+1
=> a+1 thuộc ước của (3) = {+-1;+-3}
Đến đó bạn tự giải
b, => 2x-4xy+2y = 0
=> (2x-4xy)-(1-2y)+1 = 0
=> 2x.(1-2y)-(1-2y) = -1
=> (2x-1).(1-2y) = -1
Đến đó bạn dùng ước bội mà giải nha !
a) Ta có \(\frac{a^2+a+3}{a+1}\)là số nguyên hay \(a^2+a+3⋮a+1\)
\(a.\left(a+1\right)+3⋮a+1\Rightarrow3⋮a+1\)
Do đó a + 1 thuộc ước của 3
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a+1\in\left\{1;-1;3;-3\right\}\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
Vậy....
b)Ta có \(x-2xy+y=0\)
\(\Rightarrow x.\left(1-2y\right)+y=0\Rightarrow x.\left(1-2y\right)-0,5.\left(1-2y\right)+0,5=0\)
... đến đây tịt , nếu giải tiếp thì sẽ ra ước của 0,5
a,đặt p/s là A nha
ta có A=\(\frac{a\cdot\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)
để \(A\inℤ\)
\(\Rightarrow\)\(a+\frac{3}{a+1}\)\(\inℤ\)
\(\Rightarrow\frac{3}{a+1}\inℤ\)
\(\Rightarrow a+1\inƯ\left(3\right)\)
\(\Rightarrow a+1\in\hept{ }\pm1,\pm3\)
sau đó xét từng trường hợp là xong