A=\(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+.....+\frac{1}{2^{100}}\)
Chứng minh rằng A < 1/3
Mọi người vui lòng giúp mình giải bài này với. Cảm ơn cả nhà nhiều
Cho \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\)
Chứng minh rằng \(A< \frac{1}{3}\)
1.chứng minh rằng : \(\frac{1}{2}!+\frac{2}{3}!+\frac{3}{4}!+...+\frac{99}{100}!< 1\)
2. Chứng minh rằng :\(\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+...+\frac{99.100-1}{100}< 2\)
Chứng minh rằng:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\) \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}< \frac{3}{4}\)
Bài 1: Cho A=/x+5/+2-x
a) Viết biểu thức A dưới dạng ko có dấu giá trị tuyệt đối
b) tìm giá trị nhỏ nhất của A
Bài 2: Chứng Minh rằng:
\(\frac{1}{2}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
b) Tìm số nguyên a để :
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)là số nguyên
Chứng minh rằng : \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
chứng minh rằng\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+.......+\frac{1}{100^2}< \frac{1}{4}\)
chứng minh rằng:\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+.......+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng :
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)