CMR: a + c = 2b và 2bd = c ( b + d ) Thì \(\frac{a}{b}=\frac{c}{b}\) với b,d \(\ne\) 0
Các bạn giúp mk nhé,ai làm nhanh và đúng mk sẽ tick
CMR với b,d\(\ne\)0 , \(\frac{a}{b}< \frac{c}{d}\)thì \(\frac{a}{b}< \frac{a+c}{b+c}< \frac{c}{d}\)
2)Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR : \(\frac{a}{a+c}=\frac{b}{b+d}\)với a + c khác 0 , b + d khác 0
2) cho\(\frac{a}{b}=\frac{c}{d}\)
CMR: \(\frac{a}{a+c}=\frac{b}{b+c}\)với a+c khác 0, b+d khác 0
Với a, b, c, d >0 CMR 1<\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< 2\)
\(CMR:\frac{a}{b}=\frac{c}{d}\ne thì\frac{a+b}{a-b}=\frac{c+d}{c-d}với:a,b,c,d\ne0\)
Cho a,b,c,d thuộc Z (b>0,d>0).CMR nếu \(\frac{a}{b}<\frac{c}{d}\) thì\(\frac{a}{b}<\frac{a+b}{c+d}<\frac{c}{d}\)
Cho \(\frac{a}{b};\frac{c}{d}\) (với b;d>0)
CMR: Nếu \(\frac{a}{b}< \frac{c}{d}\) thì \(\frac{a+c}{b+d}< \frac{c}{d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)( b,d khác 0). CMR \(\frac{a+b}{a}=\frac{c+d}{c}\)