\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)
\(2A=1-\frac{1}{3^8}\)
\(A=\frac{\left(\frac{6560}{6561}\right)}{2}=\frac{3280}{6561}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)
\(3A=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\) .
\(3A=3.\frac{1}{3}+3.\frac{1}{3^2}+3.\frac{1}{3^3}+...+3.\frac{1}{3^8}\)
\(3A=1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
Rồi làm như trên