Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phúc Nguyên

Bài 1: Tính tổng 100 số hạng đầu tiên của các dãy sau:

a)\(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};\dfrac{1}{30};...\)

b)\(\dfrac{1}{6};\dfrac{1}{66};\dfrac{1}{176};\dfrac{1}{336};...\)

Bài 2: Tính:

a)A=\(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)

b)B=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}}\)

Quìn
12 tháng 4 2017 lúc 15:17

Bài 1: Tính tổng 100 số hạng đầu tiên của các dãy sau:

a) \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{1}{1.2}\\\dfrac{1}{6}=\dfrac{1}{2.3}\\\dfrac{1}{12}=\dfrac{1}{3.4}\\...\end{matrix}\right.\)

Vậy số thứ 100 của dãy là: \(\dfrac{1}{100.101}=\dfrac{1}{10100}\)

Tổng: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

b) \(\left\{{}\begin{matrix}\dfrac{1}{6}=\dfrac{1}{\left(5.0+1\right)\left(5.1+1\right)}\\\dfrac{1}{66}=\dfrac{1}{\left(5.1+1\right)\left(5.2+1\right)}\\\dfrac{1}{176}=\dfrac{1}{\left(5.2+1\right)\left(5.3+1\right)}\\...\end{matrix}\right.\)

Vậy số thứ 100 của dãy là: \(\dfrac{1}{\left(5.99+1\right)\left(5.100+1\right)}=\dfrac{1}{248496}\)

Tổng: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{496.501}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{496}-\dfrac{1}{501}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)

\(=\dfrac{1}{5}.\dfrac{500}{501}\)

\(=\dfrac{100}{501}\)

Quìn
12 tháng 4 2017 lúc 15:58

Bài 2: Tính:

a) \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)

\(A=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+...+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(A=\dfrac{\dfrac{100}{1.99}+\dfrac{100}{3.97}+\dfrac{100}{5.95}+...+\dfrac{100}{49.51}}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(A=\dfrac{100\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(\Rightarrow A=\dfrac{100}{2}=50\)

Trần Quỳnh Mai
12 tháng 4 2017 lúc 16:06

Bài 2 :

a, Xét tử số : Đặt B = \(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}\)

Số số hạng của tử số là : ( 99 - 1 ) : 2 + 1 = 50 ( số )

=> Tử số có 50 phân số

Ta có : \(B=\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+\left(\dfrac{1}{5}+\dfrac{1}{95}\right)+...+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)\)

\(=\left(\dfrac{99}{99}+\dfrac{1}{99}\right)+\left(\dfrac{97}{3.97}+\dfrac{3}{3.97}\right)+\left(\dfrac{95}{5.95}+\dfrac{5}{5.95}\right)+...+\left(\dfrac{51}{49.51}+\dfrac{49}{49.51}\right)\)

\(=\dfrac{100}{1.99}+\dfrac{100}{3.97}+\dfrac{100}{5.95}+...+\dfrac{100}{49.51}\)

Xét mẫu số : Đặt C = \(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}\)

\(=\left(\dfrac{1}{1.99}+\dfrac{1}{99.1}\right)+\left(\dfrac{1}{3.97}+\dfrac{1}{97.3}\right)+...+\left(\dfrac{1}{49.51}+\dfrac{1}{51.49}\right)\)

\(=2.\dfrac{1}{1.99}+2.\dfrac{1}{3.97}+...+2.\dfrac{1}{49.51}\)

\(=2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)\)

Thay B và C vào A ta có :

\(A=\dfrac{100\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(\Rightarrow A=\dfrac{100}{2}=50\)

Vậy A = 50

b, Xét mẫu số : Đặt C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)

\(=\dfrac{100-1}{1}+\dfrac{100-2}{2}+\dfrac{100-3}{3}+...+\dfrac{100-99}{99}\)

\(=100-1+\dfrac{100}{2}-1+\dfrac{100}{3}-1+...+\dfrac{100}{99}-1\)

\(=\left(100+\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}\right)-\left(1+1+...+1\right)\)

Đặt D = 1 + 1 + ... + 1

Số số hạng của tổng D là : ( 99 - 1 ) : 1 + 1 = 99 ( số hạng )

\(\Rightarrow D=1.99=99\)

Thay D = 99 ta có :

\(C=100\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-99\)

\(=100+100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-99\)

\(=\left(100-99\right)+100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)\)

\(=1+100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)\)

\(=\dfrac{100}{100}+100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)=100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)

Thay vào đề bài , ta có :

\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)

Vậy \(B=\dfrac{1}{100}\)

Quìn
12 tháng 4 2017 lúc 16:05

Bài 2: Tính:

b) \(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}}\)

\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}{\left(1+\dfrac{98}{2}\right)+\left(1+\dfrac{97}{3}\right)+...+\left(1+\dfrac{1}{99}\right)+1}\)

\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}{\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\dfrac{100}{100}}\)

\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\)

\(B=\dfrac{1}{100}\)


Các câu hỏi tương tự
Nguyễn Xuân Nghĩa (Xin...
Xem chi tiết
Phạm Minh Cường
Xem chi tiết
Hoàng Nguyễn huy
Xem chi tiết
minh tien
Xem chi tiết
sunshine
Xem chi tiết
Xem chi tiết
Hà My Lê Phan
Xem chi tiết
Nguyễn Thị Phương Linh
Xem chi tiết
dream XD
Xem chi tiết