Bài 1: Tính tổng 100 số hạng đầu tiên của các dãy sau:
a)\(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};\dfrac{1}{30};...\)
b)\(\dfrac{1}{6};\dfrac{1}{66};\dfrac{1}{176};\dfrac{1}{336};...\)
Bài 2: Tính:
a)A=\(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)
b)B=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}}\)
Giúp mk với
Câu 1:
Cho A = \(\dfrac{1}{\dfrac{99}{\dfrac{1}{2}+}}+\dfrac{2}{\dfrac{98}{\dfrac{1}{3}+}}+\dfrac{3}{\dfrac{97}{\dfrac{1}{4}+....}}+...+\dfrac{99}{\dfrac{1}{\dfrac{1}{100}}}\).
B =\(\dfrac{92}{\dfrac{1}{45}+}-\dfrac{1}{\dfrac{9}{\dfrac{1}{50}+}}-\dfrac{2}{\dfrac{10}{\dfrac{1}{55}+}}-\dfrac{3}{\dfrac{11}{\dfrac{1}{60}+....}}-...\dfrac{92}{\dfrac{100}{\dfrac{1}{500}}}\). Tính \(\dfrac{A}{B}\)
a/ Rút gọn 2 biểu thức sau: \(E=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\)và \(F=\dfrac{94-\dfrac{1}{7}-\dfrac{2}{8}-\dfrac{3}{9}-...-\dfrac{94}{100}}{\dfrac{1}{35}+\dfrac{1}{40}+\dfrac{1}{45}+...+\dfrac{1}{500}}\)
b/ Tính E - 2F
cho A=\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{98}+\dfrac{1}{99}\)
CMR:0,2<A<0,4
1 CM
a, \(\left(\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{2n-1}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2n}\right)=\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{2n}\)( n∈Z)
b, \(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}=\dfrac{99}{50}-\dfrac{97}{49}+...+\dfrac{7}{4}-\dfrac{5}{3}+\dfrac{3}{2}\)
CMR\(\dfrac{1}{5}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}< \dfrac{2}{5}\)
\(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+.....+\dfrac{1}{10000}\)
\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+....+\dfrac{2}{99\cdot101}\)
SO SÁNH A VÀ B
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)
P=\(\left(\dfrac{1}{5}+\dfrac{1}{21}-\dfrac{1}{2015}\right):\left(\dfrac{1}{21}+\dfrac{1}{5}-\dfrac{1}{2015}+\dfrac{1}{5}.\dfrac{2}{21}.\dfrac{3}{2015}\right)+6:\left(26.2015-99\right)\)