\(A=x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+1\)
\(=\left(x^2-2\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\) luôn \(\ge0\)với mọi x
Nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) luôn > 0 với mọi x
Vậy A>0 với mọi x