ĐK x >= 0 ; y >=1 ; z >= 2
pt <=> \(2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
=> \(x-2\sqrt{x}+1+y-1-2\sqrt{y-1}+1+z-2-2\sqrt{z-2}+1=0\)
=> \(\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
ĐK x >= 0 ; y >=1 ; z >= 2
pt <=> \(2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
=> \(x-2\sqrt{x}+1+y-1-2\sqrt{y-1}+1+z-2-2\sqrt{z-2}+1=0\)
=> \(\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
GIÚP VỚI MN ƠI!!
Bài 1:Tìm x biết:
a)\(\sqrt{x^2-4}-\sqrt{x-2}=0\)
b)\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=4-\sqrt{x}-\sqrt{y}\)
Bài 2: Giải phương trình:
a) \(\sqrt[2]{\frac{x-1}{4}-3}=\sqrt[2]{\frac{4x-4}{9}}-\frac{1}{3}\)
b)\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
Bài 1 : Tìm GTNN của
a ) \(A=x-2\sqrt{x+2}\)
b) B= \(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
c) \(C=\sqrt{49x^2-22x+9}+\sqrt{49x^2+22x+9}\)
Bài 2 : Cho x ,y ,z dương . Chứng minh rằng :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
Bài 3 : Tìm x , y, z thỏa mãn \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Bài 4 : So sánh
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)và 10
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Bài 1: Tìm x, y, z biết:
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Bài 2:
\(5\sqrt{x+1}-\sqrt{36x+36}+\sqrt{9x+9}=\sqrt{8x+12}\)
Cu Hùng lên mà lấy bài này
1 Cho Biểu thức \(\frac{x^2-\sqrt{x}}{x+\sqrt{x+1}}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a, Rút gon A
b,tìm GTNN của A
Tìm x để \(B=\frac{2\sqrt{x}}{A}\) là số nguyên
2 giải pt
a,\(\sqrt{x-2}+\sqrt{y+2019}+\sqrt{z-2010}=\frac{1}{2}\left(x+y+z\right)\)
b,\(\left(x-5\right)^{2010}+\left(x-6\right)^{2010}=1\)
3 Cho các số o âm x,y,z thõa mãn \(x+y+z\le3\) . Tìm GTLn \(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(x+y+z\right)\)
4 giải pt nghiệm nguyên
\(4x^2-8y^3+2z^2+4x-4=0\)
5 tín số nguyên a,b t/m \(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
6giải pt \(\sqrt{x^2+1-2x}+\sqrt{x^2-4x+4}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
7 Tìm GTNN , GTLN \(M=2x+\sqrt{5-x^2}\)
8 cho\(x,y,z\in(0,1]\)
CM \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
giải phương trình
a) \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)
b) \(2x-8\sqrt{2x-3}+9=0\)
c)\(\sqrt{x-2}+\sqrt{y+2000}+\sqrt{z-2001}=\frac{1}{2}\left(x+y+z\right)\)
d) \(x+y+z+23=4\sqrt{x-1}+6\sqrt{y-2}+8\sqrt{z-3}\)
e)\(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
1.giải hệ phương trình
\(5x^2+6x+9=1x^2+2x^2+....+99x^8\)
\(5x^4+9y^3-3z^2+8x+3y=1x^2+2y^2+3z^4+.....+1999x^2\)
\(9y^8+6y^5+7x^3+9\sqrt[15]{x^4}=\sqrt[9]{x}+9\sqrt[10]{z}+......+888\sqrt[55]{x}\)
\(\frac{1}{\sqrt[9]{x}}+\frac{2}{\sqrt[8]{y}}+...+\frac{9}{\sqrt{x}}=\frac{1}{\sqrt[100]{x}-\sqrt[99]{y}-...-\sqrt{z}}\)
\(\sqrt[3]{2x^2}+.....+\sqrt[3]{23z^2}=\sqrt{5x}+\sqrt{7y}+\sqrt{11z}+...+\sqrt{97x}\)
Tìm x,y,z
THÁCH THỨC NGƯỜI THÔNG MINH GIẢI BÀI NÀY
Giải các phương trình sau:
1) \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+1}=\sqrt{5}.\left(\frac{1}{\sqrt{6x-1}}+\frac{1}{\sqrt{9x-4}}\right).\)
2) \(\frac{1}{\sqrt{3}x}+\frac{1}{\sqrt{9x-3}}=\frac{1}{\sqrt{5x-1}}+\frac{1}{\sqrt{7x-2}}\)
3) \(\hept{\begin{cases}x^3-y^3-z^3=3xyz\\x^3=2\left(y+z\right)\end{cases}}\)
4) \(\hept{\begin{cases}x^3+y^3+2xyz=z^3\\z^3=\left(2x+2y\right)^3\end{cases}}\)
Giaỉ phương trình:
1, x + y + 12= 4\(\sqrt{x}+6\sqrt{y-1}\)
2, \(x+y+z=2\sqrt{x-1}+2\sqrt{y-5}+2\sqrt{z+3}\)
3, \(\sqrt{3x^2+12x+13}+\sqrt{4x^2+16x+25}=-x^2-4x\\\)
4, \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)