Ôn tập phép nhân và phép chia đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
erwer rrer

Bài 1 : Tìm x biết x^2 - 5x - 6 = 0

Bài 2: Tìm GTNN của

a. P=xy biết x+y=10

b.p(x)=x^2-5x

An Nguyễn Bá
4 tháng 11 2017 lúc 8:18

Bài 1:

\(x^2-5x-6=0\)

\(\Leftrightarrow x^2+x-6x-6=0\)

\(\Leftrightarrow\left(x^2+x\right)-\left(6x+6\right)=0\)

\(\Leftrightarrow x\left(x+1\right)-6\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=6\end{matrix}\right.\)

Vậy x=-1; x=6

Bài 2:

a) Ta có: \(x+y=10\Leftrightarrow y=10-x\) (1)

Từ (1) thay vào \(P=xy\) ta được:

\(P=x\left(10-x\right)\)

\(\Leftrightarrow P=10x-x^2\)

\(\Leftrightarrow P=-x^2+10x-5^2+5^2\)

\(\Leftrightarrow P=-\left(x^2-10x+5^2\right)+5^2\)

\(\Leftrightarrow P=-\left(x-5\right)^2+25\)

Vậy GTLN của P=25 khi \(x-5=0\Leftrightarrow x=5\)

b) \(P=x^2-5x\)

\(\Leftrightarrow P=x^2-2x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2\)

\(\Leftrightarrow P=\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\)

Vậy GTNN của \(P=\dfrac{-25}{4}\) khi \(x-\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{5}{2}\)


Các câu hỏi tương tự
Nguyễn phạm bảo lâm
Xem chi tiết
trang
Xem chi tiết
Hihi
Xem chi tiết
Khanh
Xem chi tiết
Trần Thị Thùy Dương
Xem chi tiết
lợi nguyễn
Xem chi tiết
Nguyễn Nhật Gia Hân
Xem chi tiết
Chi Lê Thị Phương
Xem chi tiết
Tô Thu Huyền
Xem chi tiết