Bài 1:
Gọi số cần tìm là x; số sau là y2, ta có:
35x = y2
Mà 35 = 5 . 7, x ko thể = 5 hoặc 7
=> Số đó = 35
Bài 2:
Giả sử aabb = n2
<=> a . 103 + a . 102 + a . 10 + b = n2
<=> 11(100a + b) = n2
<=> n2 chia hết cho 11
<=> n chia hết cho 11
Do n2 có 4 chữ số nên: 32 < n < 100
=> n = 33; n = 44; n = 55; ...; n = 99
Thử n = 88 (TMYK)
=> Số đó là: 7744
Bài 1 :
Gọi số phải tìm là n ,ta có \(135n=a^2\left(a\in N\right)\)hay \(3^3.5.n=a^2\)
Vì số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn nên \(n=3.5.k^2\left(k\in N\right)\)
Vì n là số có 2 chữ số nên \(10\le3.5.k^2\le99\Rightarrow k^2\in\left(1,4\right)\)
- Nếu \(k^2=1\)thì \(n=15\)
-Nếu \(k^2=4\)thì \(n=60\)
Vậy số cần tìm là 15 hoặc 60
Bài 2 :
Gọi số chính phương cần tìm là \(n^2=aabb\left(a,b\in N\right)\)và \(\left(1\le a\le9,0\le b\le9\right)\)
Ta có \(n^2=aabb=1100a+11b=11\left(99a+a+b\right)\left(1\right)\)
\(\Rightarrow\left(99a+a+b\right)⋮11\Rightarrow\left(a+b\right)⋮11\Rightarrow a+b=11\)
Thay \(a+b=11\)vào (1)ta được \(n^2=11\left(99a+11\right)=11^2\left(9a+1\right)\)
\(\Rightarrow9a+1\)phải là số chính phương
a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
9a+1 | 10 | 19 | 28 | 37 | 46 | 55 | 64 | 73 | 82 |
Ta thấy chỉ có \(a=7\)thì \(9a+1=64=8^2\)
Vậy \(a=7\Rightarrow b=4\)và số cần tìm là \(7744=11^2.8^2=88^2\)
Chúc bạn học tốt ( -_- )