a) \(n^{51}=n\)
\(\Rightarrow n^{51}-n=0\)
\(n\left(n^{50}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n^{50}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n^{50}=1\end{cases}}\)
\(\Rightarrow n\in\left\{-1;0;1\right\}\)
b) \(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow3^{-2}.3^{3n}=3^n\)
\(3^{3n-2}=3^n\)
\(\Rightarrow3n-2=n\)
\(3n-n=2\)
\(2n=2\)
\(n=2:2=1\)
c) \(3^{-2}.3^4.3^n=3^7\)
\(3^{n+4-2}=3^7\)
\(3^{n+2}=3^7\)
\(\Rightarrow n+2=7\)
\(\Rightarrow n-7=5\)
d) \(32^{-n}.16^n=2048\)
\(2^{-5n}.2^{4n}=2^{10}\)
\(2^{4n-5n}=2^{10}\)
\(2^{-n}=2^{10}\)
\(\Rightarrow-n=10\)
\(\Rightarrow n=-10\)