\(M=x^2+y^2-x+6y+10\)
\(\Leftrightarrow M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Với mọi x,y ta có :
\(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Leftrightarrow M\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi : \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy ...
Bài 2:
b: \(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/2
c: \(=-2x^2+2x-5\)
\(=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2