Bài 1 :
(2x + 1)(y - 5) = 12
=> 2x + 1 \(\in\)Ư(12)
Vì x \(\ge\)0 => 2x + 1 \(\ge\)1
Mà 2x + 1 chia 2 dư 1
=> 2x + 1 \(\in\){1; 3}.
Ta có bảng sau:
2x + 1 | 1 | 3 |
2x | 0 | 2 |
x | 0 | 1 |
y - 5 | 12 | 4 |
y | 17 | 9 |
Vậy : (x; y) \(\in\){(0; 17); (1; 9)}
Đúng 1
Bình luận (0)
Bài 2:
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2(2n - 1) - 3 chia hết cho 2n - 1
Mà 2(2n - 1) chia hết cho 2n - 1
=> 3 chia hết cho 2n - 1 = > 2n - 1 \(\in\)Ư(3) = {1; 3; -1; -3}
Mà n \(\ge\) 0 => 2n - 1 \(\ge\)1 => 2n - 1 \(\in\){-1; 1; 3}
Ta có bàng sau:
2n - 1 | -1 | 1 | 3 |
2n | 0 | 2 | 4 |
n | 0 | 1 | 2 |
Vậy : n \(\in\){0; 1; 2}
Đúng 0
Bình luận (0)