\(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{49}+1\right)\)
= \(\left(\frac{1}{2}+\frac{2}{2}\right).\left(\frac{1}{3}+\frac{3}{3}\right).\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{49}+\frac{49}{49}\right)\)
= \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{50}{49}\)
=\(\frac{3.4.5...50}{2.3.4...49}\)
=\(\frac{50}{2}\)
=25
kq la25
ai h cho minh minh h lai cho