Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thùy Linh

Bài 1; So sánh 2 số A  và B ,biết rằng 

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49..50}\)

\(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

Bài 2 : Cho \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Biết rằng \(a+b+c=7\)và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{7}{10}\)

Hãy so sánh \(S\)và \(1\frac{8}{11}\)

Trịnh Sảng và Dương Dươn...
2 tháng 6 2018 lúc 14:06

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

I don
2 tháng 6 2018 lúc 14:13

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

I don
2 tháng 6 2018 lúc 14:21

Bài 2:

ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Rightarrow S=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)

\(S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

thay số: \(S=7.\frac{7}{10}-3\)

\(S=4\frac{9}{10}-3\)

\(S=1\frac{9}{10}=\frac{19}{10}\)

mà  \(1\frac{8}{11}=\frac{19}{11}\)

\(\Rightarrow\frac{19}{10}>\frac{19}{11}\)

\(\Rightarrow S>\frac{19}{11}\)

\(\Rightarrow S>1\frac{8}{11}\)


Các câu hỏi tương tự
Vũ Thu An
Xem chi tiết
Xem chi tiết
Lê Khánh Huyền
Xem chi tiết
Shizuka Chan
Xem chi tiết
The Last Legend
Xem chi tiết
Đinh
Xem chi tiết
Lê Quang Trung
Xem chi tiết
♛☣ Peaceful Life ☣♛
Xem chi tiết
Nguyen Le Quynh Trang
Xem chi tiết