Bài 1 : Phân tích đa thức thành nhân tử
a) x2-6x-y2+9
b) 25-4x2-4xy -y2
c) x2+2xy+y2- xz-yz
d) x2-4xy+4y2-z2+4tz-4t2
Bài 2 : Phân tích đa thức thành nhân tử
a) ax2+cx2-ay+ay2-cy+cy2
b) ax^2+ay^2-bx^2-by^2+b-a
c) ac^2-ad-bc^2+cd+bd-c^3
Bài 3 : Tìm x
a) x(x-5)-4x+20=0
b) x(x+6)-7x-42=0
c) x^3-5x^2+x-5=0
d) x^4-2x^3+10x2-20x=0
Bài 1:
\(a,x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-y-3\right)\left(x+y-3\right)\)
\(b,25-4x^2-4xy-y^2=25-\left(2x+y\right)^2\)
\(=\left(5-2x-y\right)\left(5+2x+y\right)\)
\(c,x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\) \(d,x^2-4xy+4y^2-z^2+4tz-4t^2\)
\(=\left(x-2y\right)^2-\left(x-2t\right)^2=\left(x-2y-x+2t\right)\left(x-2y+x-2t\right)\)Bài 3,
\(a,x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(b,x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\Rightarrow\left[{}\begin{matrix}x+6=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)\(c,x^3-5x^2+x-5=0\)
\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x-5\right)=0\)
Ta có: \(x^2+1\ge1\Rightarrow x-5=0\Rightarrow x=5\)
\(d,x^4-2x^2+10x^3-20=0\)
\(\Leftrightarrow x^3\left(x-2\right)+x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)x\left(x^2+1\right)=0\)
ta có:
\(x^2+1\ge1\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)