Bài 1:
Goi số lớn là x(x>3)
=>Số nhỏ là x-3
Hai lần số nhỏ là 2(x-3)
Vì 2 lần số nhỏ lớn hơn số lớn là 2 nên ta có phương trình :
2(x-3)-x=2
<=>2x-6-x=2
<=>x-6=2
<=>x=2+6
<=>x=8(thỏa mãn)
Vậy số lớn là 8
số nhỏ là 8-3=5
Bài 2:
A=\(\frac{5}{x-2}+\frac{7}{x+2}-\frac{11x}{x^2-4}\)
A=\(\frac{5\left(x+2\right)}{x^2-4}+\frac{7\left(x-2\right)}{x^2-4}-\frac{11x}{x^2-4}\)
A=\(\frac{5x+10}{x^2-4}+\frac{7x-14}{x^2-4}-\frac{11x}{x^2-4}\)
A=\(\frac{5x+10+7x-14-11x}{x^2-4}\)
A=\(\frac{x-4}{x^2-4}\)
Bài 1 : Gọi số lớn là x ( \(x\inℕ,x>3\))
Số bé là: \(x-3\)
Vì 2 lần số nhỏ lớn hơn số lớn là 2 nên ta có phương trình:
\(2.\left(x-3\right)-x=2\)
\(\Leftrightarrow2x-6-x=2\)
\(\Leftrightarrow x=8\)( thỏa mãn điều kiện )
Vậy số lớn là 8 và số bé là 5
Bài 2: \(ĐKXĐ:\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
\(A=\frac{5}{x-2}+\frac{7}{x+2}-\frac{11x}{x^2-4}=\frac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{7\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{11x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{5\left(x+2\right)+7\left(x-2\right)-11x}{\left(x-2\right)\left(x+2\right)}=\frac{5x+10+7x-14-11x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x-4}{\left(x-2\right)\left(x+2\right)}\)
Bài 1.
Gọi số lớn là x ( x thuộc N, x > 3 )
=> Số bé = x - 3
Hai lần số nhỏ lớn hơn số lớn là 2
=> Ta có phương trình : 2( x - 3 ) - x = 2
<=> 2x - 6 - x = 2
<=> x - 6 = 2
<=> x = 8 ( tmđk )
Vậy số lớn là 8
số bé = 8 - 3 = 5
Bài 2.
\(A=\frac{5}{x-2}+\frac{7}{x+2}-\frac{11x}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)
\(A=\frac{5}{x-2}+\frac{7}{x+2}-\frac{11x}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{7\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{11x}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{5x+10+7x-14-11x}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x-4}{\left(x-2\right)\left(x+2\right)}\)