Bài 2:
f(x)=x^2; g(x)=2/x
f(g(x))=(2/x)^2=4/x^2
g(f(x))=g(x^2)=2/x^2
Bài 2:
f(x)=x^2; g(x)=2/x
f(g(x))=(2/x)^2=4/x^2
g(f(x))=g(x^2)=2/x^2
1) Cho đa thức \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-...+13.x^2-14.x+14\) Tính f(13)
2) Tính : \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\)
Bài 1: \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-.....-14.x+14\)
Tìm \(f\left(13\right)\)
Bài 2: Cho các hàm số \(f_1\left(x\right)=x,f_2\left(x\right)=-2x,f_3\left(x\right)=1,f_4\left(x\right)=5,f_5\left(x\right)=\dfrac{1}{x},f_6\left(x\right)=x^2\). Trong các hàm số nào có tính chất \(f\left(-x\right)=f\left(x\right),f\left(-x\right)=-f\left(x\right),f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right),f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)?\)
1) Tính
\(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\)
\(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\)
2) Tìm x biết:
a) \(x^2-2x-15=0\)
b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\)
3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng minh: \(\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)
4) Cho \(f\left(x\right)=x^{100}-x^{99}+...+x^2-x+1\)
\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)
Tính giá trị của hiệu \(f\left(x\right)-g\left(x\right)\) tại x=0,1
5) Cho tam giác ABC có \(\widehat{A}=\ge90\) ; \(M\in AB,N\in AC\)
Chứng minh: BC > MN
6) Cho tam giác ABC, M là trung điểm BC, biết \(\widehat{BAM}>\widehat{CAM}\) . So sánh B và C
1. Tìm x, biết:
a) \(\left|x-1\right|+\left|x-4\right|=5\)
b) \(3\left|x+4\right|+\left|x-5\right|=10\)
c) \(\left|x+3\right|+\left|2x+1\right|=3x-6-\left|x+1\right|\)
d) \(\left|x\right|-\left|2x+3\right|=\left|x-1\right|\)
e) \(\left|x+1\right|+\left|2x-3\right|=\left|3x-2\right|\)
f) \(\left|x+2\right|+\left|x+\dfrac{3}{5}\right|=10x-\left|x+\dfrac{1}{2}\right|\)
g) \(\left|x+3\right|+\left|x+1\right|=3x\)
h) \(\left|x-1\right|+\left|x-3\right|< x+1\)
i) \(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+...+\left|x+\dfrac{1}{97.99}\right|=50x\)
j) \(\left|3x-5\right|+\left|3x+1\right|=6\)
(Ai làm đc bài nào thì làm nha)
Cho đa thức \(f\left(x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0\)
Biết rằng: \(f\left(1\right)=f\left(-1\right);f\left(2\right)=f\left(-2\right)\)
Chứng minh: \(f\left(x\right)=f\left(-x\right)\forall x\)
Cho đa thức f(x) tỏa mãn \(\left(x^2-5x\right).f\left(x-2\right)=\left(x^2+3x+2\right).f\left(x+1\right)\)với mọi x. Chứng tỏ rằng đa thức f(x) không có nghiệm.
Cho hàm số f(x) xác định với mọi x thuộc R ta có :
\(f\left(\dfrac{2}{x}\right)+3f\left(x\right)=x^2\) . Tính \(f\left(\dfrac{2}{x}\right)\)
Cho hàm số
f(x)=\(\left|x-1\right|+2x\)
g(x)=\(\left|x+3\right|-1\)
a)Tính f(\(\dfrac{1}{2}\))+g(-1)
b) Tìm x để f(x)-2g(x)=2(x+1)
Cho hàm số y = \(\dfrac{-2}{3}x\) ; đa thức f(x) thỏa mãn điều kiện:
\(\left(x-1\right).f\left(x\right)=\left(x+4\right).f\left(x+8\right)\)với x\(\in R\).
Chứng minh đa thức f(x) có ít nhất 1 nghiệm là số nguyên tố