freqché tonery élooin shçç
arzàyu radio rubsz tqsd
çàèé sonuhy,lafneq toin
çàea & reszao and shoppea
reach 123 tusqi yuoyuè
(reachèst)
freqché tonery élooin shçç
arzàyu radio rubsz tqsd
çàèé sonuhy,lafneq toin
çàea & reszao and shoppea
reach 123 tusqi yuoyuè
(reachèst)
Cho ΔABC vuông tại A ( AB < AC ), đường cao AH ( H ϵ BC ).
1. Chứng minh: ΔHBA đồng dạng ΔABC và BA.BA=BH.BC.
2. Kẻ phân giác BE của góc ABC ( E ϵ AC ) , BE cát AH tại I .
Chứng minh : ΔHBI đồng dạng ΔABE .
3. Chứng minh : AI=AE
Cho tam giá ABC vuông tại A, đường cao AH.
a) Chứng minh hai tam giác ABC và HBA đồng dạng với nhau, từ đó suy ra AB2= BH. BC
b) Tia phân giác cắt AH tại I, Chứng minh rằng IA/IH = AC/HA
c) Tia phân giác của góc HAC cắt BC tại K. Chứng minh IK // AC.
Giúp mình với mình đang cần gấp ạ
Cho ΔABC vuông tại A (AB<AC), đường cao AH (H∈BC). BD là phân giác của ∠ABC (D∈AC). Gọi I là giao điểm của AH và BD.
a. Chứng minh: ΔHBA đồng dạng ΔABC và ΔHBI đồng dạng ΔABD
b. Chứng minh: \(\frac{IA}{IH}=\frac{BC}{AB}\)
c. Đường thẳng vuông góc với BD tại B cắt đường thẳng AH tại M. CHứng minh: MA.IH = MH.IA
Giúp mình ý b,c với ạ
Cho ∆ABC vuông tại A, đường cao AH.
a) Chứng minh ∆ABC đồng dạng với ∆HBA, từ đó suy ra AB2 = BH.BC.
b) Tia phân giác của góc ABC cắt AH tại I. Chứng minh rằng: IA/IH=AC/HA
c) Tia phân giác của góc HAC cắt BC tại K. Chứng minh IK song song với AC.
Cho ΔABC vuông cân tại A. Đường cao AH và đường phân giác BE cắt nhau tại I.
a) Biết AB = 3cm. Tính AE?
b) Chứng minh ΔAIE cân
c) Chứng minh rằng: CE = 2.HI
Cho ΔABC vuông tại A (AB<AC), đường cao AH.
a)Chứng minh ΔABC đồng dạng ΔHBA từ đó suy ra AB2=BC.BH; AB.AC=BC.AH.
b)Chứng minh ΔABC đồng dạng ΔHAC từ đó suy ra AC2=BC.CH.
c)Tia phân giác của góc ABC cắt AH tại K, cắt AC tại I. Chứng minh: ΔABK đồng dạng ΔCBI.
d)Chứng minh\(\dfrac{AI}{IC}=\dfrac{KH}{AK}\)
e)Tính tỉ số diện tích của ΔBHK và ΔBAI khi AB=3cm, AC=4cm.
f)Tính diện tích ΔBIC
Cho ΔABC vuông tại A, đường cao AH.
a) Chứng minh đồng dạng với ΔHBA, từ đó suy ra AB.AH=BH.AC
b) Tia phân giác của góc ABC^ cắt AH tại I. Biết BH = 3cm, AB = 5 cm. Tính AI, HI
c) Tia phân giác góc HAC^ cắt BC tại K. Chứng minh IK // AC.
d) Gọi M là giao điểm của AK và IC, N là trung điểm của AC. Chứng minh: H, M, N thẳng hàng
Cho tam giác ABC vuông tại A có AB = 12cm, AC = 16cm, đường cao AH. Kẻ BE là phân giác của góc ABC ( E thuộc AC), BE cắt AH tại F.
a) Tính BC, AE
b) Chứng minh: tam giác HAB đồng dạng với tam giác HCA.
c) Chứng minh: AB2 = BH.BC