Bài 1 :
Cho 3 tỉ số bằng nhau \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\) . Tìm giá trị của mỗi tỉ số đó
Bài 2 :
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a;b;c;d\ne0\). Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
Bài 3 :
Tính tổng \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\). Chứng minh rằng \(A⋮43\)
Bài 4 :
Tìm GTNN của biểu thức : \(A=x\left(x+2\right)+2\left(x-\frac{3}{2}\right)\)
Bài 5 :
Cho \(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\right)^4-\left(\frac{3}{4}\right)^5+...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
Chứng minh A không phải là số nguyên
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
Sai rồi em ơi 2 trường hợp cơ
+, bằng -1
+, bằng 2