1.Tìm các số a,b,c khác 0 thỏa mãn \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\) và a + b + c = 69?
2. Cho 3 số thực a,b,c khác 0 và đôi một khác nhau thỏa mãn a2 (b+c) = b2 (a+c) = 2019. Tính P= c2 (a+b)
3.Cho P = \(\frac{\left(x+y\right).\left(y+z\right).\left(z+x\right)}{x.y.z}\)Tính P biết \(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{x+y+z}{x}\)
Các bạn làm được bài nào thì làm giúp mình vs nhé :(
a) Tìm các số x và y biết rằng \(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
b) Cho 3 số a,b,c khác nhau và khác 0. Biết \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức \(P=\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}\)
Bài 1: Tìm số hữu tỉ x;y;z :
a) x(x+y+z) = -5
y(x+y+z) = 9
z(x+y+z) = 5
b) x-y = x.y = x:y (y khác 0)
Bài 2: CMR: M không phải là số nguyên (biết a,b,c > 0).
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Chứng minh rằng : Nếu a(y+z)=b(z+x)=c(x+y)
Trong 3 số a;b;c là các số khác nhau và khác 0 thì:\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
câu 1 :
tìm giá trị lớn nhất của đẳng thức: A= I x-2018I - Ix-2017I
câu 2:
cho \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)( với \(\text{a,b,c }\ne0;b\ne c\)) chứng minh \(\frac{a}{b}=\frac{a-c}{c-b}\)
câu 3:
a) cho tỉ lệ thức \(\frac{ab}{bc}=\frac{b}{c}\)với \(c\ne0\). chứng minh ac=b2
b)tìm các số thực x,y,z biết\(\frac{x +y-3}{z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{1}{x+y+z}\)
câu 4 :
tìm các giá trị của x, y thỏa mãn: I2x-27I2011+(3y+10)2012=0
1. Tìm các số a,b,c không âm thỏa mãn a+3c=8;a+2b=9 và tổng a+b+c có giá trị lớn nhất
2. Cho 3 số x,y,z khác 0 và x+y+z \(\ne\)0 thỏa mãn điều kiện:
\(\frac{\left(y+z-2x\right)}{x}=\frac{\left(z+x-2y\right)}{y}=\frac{\left(x+y-2z\right)}{z}\). Hãy chứng tỏ A = \(\left[1+\frac{x}{y}\right].\left[1+\frac{y}{z}\right].\left[1+\frac{z}{x}\right]\)là một số tự nhiên
Nhanh nha! Cảm ơn
1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0
b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344
c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17
3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0
b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A
c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
1:cho \(\frac{a}{b}=\frac{c}{d}\)\(a,b,c,d\ne0,a\ne+_-b,a\ne+_-d\)
chứng minh rằng \(\frac{a+b}{b}=\frac{c+d}{d}\);\(\frac{a}{a-b}=\frac{c}{c-d}\)
2,biết rằng các cạnh tam giác tỉ lệ với các số 3,4,5 và chu vi tam giác là 36 cm.tính độ dài cac scanhj của tam giác đó
3,tìm a,b,c,d biết rằng a:b:c:d=3:4:5;6 và a+b+C+d=3,6
4,tìm x,y,z biết \(\frac{x}{3}=\frac{y}{2};\frac{x}{5}=\frac{z}{7}\)và x+y+z=184
a) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức: \(B=\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
b) Tìm x, y, z biết:
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)