Bai 1; a) Cho \(B\) = \(\frac{1}{2}\)+ (\(\frac{1}{2}\))2 + (\(\frac{1}{2}\))3 + (\(\frac{1}{2}\))4 + ... + (\(\frac{1}{2}\))98 + (\(\frac{1}{2}\))99 . Chứng minh rằng \(B\) \(< 1\)
b) Cho \(C\) = \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{3^3}\)+...+ \(\frac{1}{3^{98}}\)+ \(\frac{1}{3^{99}}\). Chứng minh rằng \(C\) \(< \)\(\frac{1}{2}\)
Bai 2;Chứng minh rằng;
a) \(\frac{3}{1^2.2^2}\)+ \(\frac{5}{2^2.3^2}\)+ \(\frac{7}{3^2.4^2}\)+ ... + \(\frac{19}{9^2.10^2}\)\(< \)\(1\)
b) \(\frac{1}{3}\)+ \(\frac{2}{3^2}\)+\(\frac{3}{3^3}\)+ ... + \(\frac{99}{3^{99}}\)+ \(\frac{100}{3^{100}}\)\(< \frac{3}{4}\)
1. a) 2B = 1 + 1/2 + 1/22+...+1/298
B - B = (1+1/2+...+1/298) - (1/2+....+1/299)
B = 1 - 299 => B < 1
b) Làm tương tự như câu a, ra là (1 - 1/399) : 2 = 1/2 - 1/2.399(C bé hơh 1/2)
1. a). Theo đầu bài ta có:
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\Leftrightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Leftrightarrow B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{2^{99}}< 1\)( đpcm )
1. b). Theo đầu bài ta có:
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(\Leftrightarrow C=\frac{\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)}{2}\)
\(\Leftrightarrow C=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)( đpcm )
Bài 2b. Theo đầu bài ta có:
\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)
\(=\frac{\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\right)}{2}\)
\(=\frac{\left(1-\frac{100}{3^{100}}\right)+\left(\frac{2}{3}-\frac{1}{3}\right)+\left(\frac{3}{3^2}-\frac{2}{3^2}\right)+...+\left(\frac{99}{3^{98}}-\frac{98}{3^{98}}\right)+\left(\frac{100}{3^{99}}-\frac{99}{3^{99}}\right)}{2}\)
\(=\frac{\left(1-\frac{100}{3^{100}}\right)+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)}{2}< \frac{1+\frac{1}{2}}{2}=\frac{3}{2}:2=\frac{3}{4}\)
\(\Rightarrow\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}< \frac{3}{4}\) ( đpcm )
Mọi người làm 1a,1b,2b rồi để mình giúp bạn bài 2a thôi nhé:
Cái này có quy luật cả rồi
3/1^2.2^2 + 5/2^2.3^2 + .... + 19/9^2.10^2
=3/1.4 + 5/4.9 + 7/9.16 + .... + 19/81.100
=1/1 - 1/4 + 1/4 - 1/9 + 1.9 + 1/16 + .... + 1/81 - 1/100
=1/1-1/100 <1 (đpcm)
2b) Ta có: \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(\Rightarrow2B=3-\frac{1}{3^{99}}\)
\(\Rightarrow2B< 3\Rightarrow B< \frac{3}{2}\)
Vì \(2A=B-\frac{100}{3^{100}}\Rightarrow2A< B\)
\(\Rightarrow2A< \frac{3}{2}\Rightarrow A< \frac{3}{4}\)(đpcm)