Gọi độ dài ba cạnh (ba đáy của các đường cao tương ứng) lần lượt là a,b,c
Cùng 1 tam giác, đường cao và đáy là các đại lượng tỉ lệ nghịch nên :
\(\frac{4a}{2}=\frac{12b}{2}=\frac{xc}{2}=S\)(S là diện tích tam giác ABC)
\(\Rightarrow2a=6b=\frac{x}{2}.c=S\)
\(\Rightarrow\hept{\begin{cases}a=\frac{S}{2}\\b=\frac{S}{6}\\c=\frac{2S}{x}\end{cases}}\)
Theo bất đẳng thức tam giác ,ta có:
\(a-b< c< a+b\)
\(\Rightarrow\frac{S}{2}-\frac{S}{6}< \frac{2S}{x}< \frac{S}{2}+\frac{S}{6}\)
\(\Rightarrow\frac{S}{3}< \frac{2S}{x}< \frac{2S}{3}\)
\(\Rightarrow\frac{2S}{6}< \frac{2S}{x}< \frac{2S}{3}\)
\(\Rightarrow3< x< 6\)
Mà x là số tự nhiên nên x = 4 hoặc x = 5