\(B=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+...+19}\)
Tính :
P = \(\frac{\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+....+\frac{18}{2}+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{19}+\frac{1}{20}}\)
Giải giúp mình bài này với.
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+19}\)
giúp mình với:
\(\frac{1}{1+2+3+4}+\frac{1}{1+2+...+5}+\frac{1}{1+2+...+6}+...+\frac{1}{1+2+...+19}\)
a)\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x......x\left(1-\frac{1}{18}\right)x\left(1-\frac{1}{19}\right)x\left(1-\frac{1}{20}\right)\)
b)\(1\frac{1}{2}x1\frac{1}{3}x1\frac{1}{4}x1\frac{1}{5}x......x1\frac{1}{2005}x1\frac{1}{2006}x1\frac{1}{2007}\)
Tính: A= \(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+4+...+19}\).
So sánh \(A\)với\(13\),biết rằng:
\(A=\frac{13}{15}+\frac{7}{5}+\frac{3}{4}+\frac{1}{5}+\frac{1}{7}+\frac{19}{20}+\frac{5}{4}+\frac{1}{3}+\frac{1}{6}+\frac{1}{13}+\frac{17}{23}+\frac{9}{8}+\frac{2}{5}+\frac{1}{7}+\frac{1}{25}+\frac{3}{2}+\frac{1}{8}+\frac{1}{19}+\frac{1}{9}+\frac{1}{97}\)
1) \(79\frac{19}{35}.\frac{7}{90}+15\frac{16}{35}.\frac{7}{90}\)
2)\(\left(3\frac{1}{5}-\frac{1}{11}\right).11\)
3)\(4\frac{1}{5}:\left(2\frac{1}{3}.1\frac{2}{5}\right)\)
4)\(13,2.\frac{15}{64}-\left(\frac{4}{5}+\frac{2}{3}\right):3\frac{2}{3}\)
Tính :
a) 3,5 x 2 + 1,25 x 4
b) \(\frac{3}{4}+2\times\left(\frac{1}{2}-\frac{1}{15}\right)\)
c) \(\frac{7}{11}\times\frac{1}{19}+\frac{7}{11}\times\frac{8}{19}-\frac{4}{11}\)