B=1+3+3^2+3^3+..+3^100
3B = 31 + 32 + 33 + 34 +...+ 3100 + 3101
3B - B = ( 31 + 32 + 33 + 34 +...+ 3100 + 3101 ) - ( 1 + 3 + 32 + 33 +...+ 3100 )
=> 2B = 3101 - 3
=> \(B=\frac{\left(3^{101}-3\right)}{2}\)
3B = 3+3^2+...+3^101
3B - B = (3-3)+(3^2-3^2) +... + (3^100 - 3^100) + 3^101 - 1
2B = 3^101 - 1
B = (3^101 - 1)/2
B=1+3+3^2+3^3+..+3^100
3B = 3(1+3+3^2+3^3+..+3^100)
3B = 3 + 3^2 ... 3^101
3B - B = 2B = (3 + 3^2 ... 3^101) - (1+3+3^2+3^3+..+3^100)
B = (3^101 - 1) : 2
mình thấy nó gioosngy chang bài toán trên lớp của mình
B= 1 + 3 + 32 +......+ 3100
3B= 3 + 32+33+......+ 3101
3B-B= (3+32+33+......+3101) - (1+3+32+......+3100)
B= (3101 -1)/2
B=1+3+3^2+3^3+..+3^100
=> 3B = 3 + 3^2 + 3^3 + ...+ 3^101
=> 3B - B = ( 3 + 3^2 + 3^3 + ...+ 3^101) - (1+3+3^2+3^3+..+3^100)
=> 2B = 3^101 - 1
=> B =( 3^101 - 1) / 2