\(B=1+2+3^2+\cdot\cdot\cdot+3^{51}\)
\(\Rightarrow B=3+3^2+3^3+\cdot\cdot\cdot+3^{51}\)
\(\Rightarrow3B=3^2+3^3+\cdot\cdot\cdot+3^{52}\)
\(\Rightarrow3B-B=\left(3^2+\cdot\cdot\cdot+3^{52}\right)-\left(3+\cdot\cdot\cdot+3^{51}\right)\)
\(\Rightarrow2B=3^{52}-3\)
\(\Rightarrow B=\frac{3^{52}-3}{2}\)
\(1+2+3^2+3^3+...+3^{50}+3^{51}\)
Đặt tổng trên là A ta có :
\(A=3+3^2+3^3+...+3^{50}+3^{51}\)
\(3A=3^2+3^3+3^4+...+3^{51}+3^{52}\)
\(3A-A=\left(3^2+...+3^{52}\right)-\left(3+...+3^{51}\right)\)
\(2A=3^{52}-3\)
\(A=\frac{3^{52}-3}{2}\)
Vậy...
Cbht
Ta có :
\(B=3+3^2+3^3+...+3^{50}+3^{51}\)
\(3A=3^2+3^3+3^4+...+3^{51}+3^{52}\)
\(3A-A=\left(3^2+...+3^{52}\right)-\left(3+...+3^{51}\right)\)
\(2A=3^{52}-3\)
=> \(A=\frac{3^{52}-3}{2}\)