Bạn vào link này nhé:https://h.vn/hoi-dap/question/39236.html
~Study well~
#Bạch_Dương_Chi#
\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Đặt: \(A=1+2+2^2+2^3+....+2^{2008}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2009}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+....+2^{2008}\right)\)
\(\Rightarrow2^{2009}-1\)
\(\Rightarrow B=\frac{2^{2009}-1}{1-2^{2009}}\)
Đặt \(A=1+2+2^2+2^3+...+2^{2008}\)
\(\Rightarrow2A=2+2^2+2^3+2^4...+2^{2009}\)
\(\Rightarrow2A-A=2+2^2+2^3+2^4...+2^{2009}-1-2-2^2-2^3-...-2^{2008}\)
\(\Rightarrow A=2^{2009}-1\)
\(\Rightarrow B=\frac{2^{2009}-1}{1-2^{2009}}=\frac{-1\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)
\(A=1+2+2^2+2^3+2^4+....+2^{2008}\)
\(2A=2+2^2+2^3+2^4+.....+2^{2009}\)
\(A=2^{2009}-1\)
\(B=\frac{2^{2009}-1}{1-2^{2009}}=\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)