Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\frac{1}{1\cdot2}< \frac{1}{2^2}\)
\(\frac{1}{2\cdot3}< \frac{1}{3^2}\)
\(\frac{1}{3\cdot4}< \frac{1}{4^2}\)
...
\(\frac{1}{99\cdot100}< \frac{1}{100^2}\)
\(\Rightarrow B< A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(B< A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< A=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{100}>\frac{3}{4}\)
\(\Leftrightarrow B< \frac{3}{4}< A\)