Rút gọn \(B=\left(x^4-x+\frac{x-3}{x^3+1}\times\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right)\times\frac{4x^2+6x+1}{\left(x+3\right)\left(4-x\right)}\)
rút gọn :
a,\(\frac{x^5y}{\left(xy^4\right)}\)
b, \(\frac{3\times x^2\times y^5}{9\times x\times y^4}\)
c, \(\frac{\left(3\times x\times y^2\right)^4}{27\times x^5y^3}\)
tìm x , biết :
\(\frac{4}{5}x^2\times\left(\frac{x}{3}-\frac{1}{2}\right)-\left(\frac{1}{5}x-\frac{2}{3}\right)\times\left(\frac{4x^2}{3}+1\right)=\frac{22}{45}x^2\)
1.Rút gọn biểu thức:
\(a,\)\(x\times\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(b,\)\(3x\times\left(x-2\right)-5x\times\left(1-x\right)-8\times\left(x^2-3\right)\)
\(c,\)\(\left(2x-6\right)\times\left(x+3\right)-5\times\left(2x^2-x+7\right)\)
Cho
P=\(\left(\frac{2}{\left(x+1\right)^3}\times\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\times\left(\frac{1}{x^2}+1\right)\right)\div\frac{x-1}{x^3}\)
a) Rút gọn P
b)Tìm x để P<1
c)Tìm x thuộc Z để P thuộc Z
tìm min, max của \(C=x^2+y^2\). Biết: \(x^2\times\left(x^2+2\times y^2-3\right)+\left(y^2-2\right)^2=1\)
\(\frac{1}{\left(x+y\right)^2}\cdot\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^{\text{4}}}\cdot\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)\)
Giúp vs cần gấp
Cho x,y>0 thỏa mãn x+y=1.Tìm min của P=\(\left(1-\frac{1}{x^2}\right)\times\left(1-\frac{1}{y^2}\right)\)
1)Phân tích đa thức sau thành nhân tử ;
a)\(x^3+\left(a+b+c\right)\times x^2+\left(ab+ac+bc\right)\times x+abc\)
b)\(x\times\left(y^2-z^2\right)+y\left(z^2-x^2\right)-z\left(x^2-y^2\right)\)