Bài 1:
Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)
Dấu \(=\) xảy ra khi \(x=y, xy=1\) và \(x+y=2\) hay \(x=y=1\)
Bài 1:
Áp dụng BĐT Cô-si cho các số dương:
\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)
Tiếp tục áp dụng BĐT Cô-si:
\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)
\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)
Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)
Dấu "=" xảy ra khi $x=y=1$
Bài 2:
Vì $xyz=1$ nên:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}=\frac{z+x+y}{xyz}+\frac{3}{x+y+z}=x+y+z+\frac{3}{x+y+z}\)
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{x+y+z}{3}+\frac{3}{x+y+z}\geq 2(1)\)
\(\frac{2}{3}(x+y+z)\geq \frac{2}{3}.3\sqrt[3]{xyz}=\frac{2}{3}.3=2(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}\geq 2+2=4\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
Bải 3:
Xét hiệu:
\(\frac{a^2}{4}+\frac{9}{a+1}-4=\frac{a^2(a+1)+36-16(a+1)}{4(a+1)}=\frac{a^3+a^2-16a+20}{4(a+1)}\)
\(=\frac{a^2(a-2)+3a(a-2)-10(a-2)}{4(a+1)}=\frac{(a-2)(a^2+3a-10)}{4(a+1)}=\frac{(a-2)(a-2)(a+5)}{4(a+1)}\)
\(=\frac{(a-2)^2(a+5)}{4(a+1)}\geq 0, \forall a>0\)
\(\Rightarrow \frac{a^2}{4}+\frac{9}{a+1}\geq 4\) (đpcm)
Dấu "=" xảy ra khi $a=2$