Bài 1:
Áp dụng BĐT Bunhiacopxky:
\((a^2+b^2+c^2+d^2)(1+1+1+1)\geq (a+b+c+d)^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\geq \frac{(a+b+c+d)^2}{4}=\frac{2^2}{4}=1\) (đpcm)
Dấu "=" xay ra khi \(a=b=c=d=\frac{1}{2}\)
Bài 2:
Bạn xem lại đề:
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(16a^4+1\geq 2\sqrt{16a^4.1}=8a^2\Rightarrow \frac{a^2}{1+16a^4}\leq \frac{a^2}{8a^2}=\frac{1}{8}(1)\)
\(b^4+1\geq 2\sqrt{b^4.1}=2b^2\Rightarrow \frac{b^2}{1+b^4}\leq \frac{b^2}{2b^2}=\frac{1}{2}(2)\)
Từ \((1);(2)\Rightarrow \frac{a^2}{1+16a^4}+\frac{b^2}{1+b^4}\leq \frac{1}{8}+\frac{1}{2}=\frac{5}{8}\) chứ không phải $\frac{1}{4}$
Nếu bạn muốn kết quả là $\frac{1}{4}$ thì cần thay $b^4$ bằng $16b^4$ và làm tương tự như trên.
Bài 3:
Ta có:
\(2x+3y+\frac{6}{x}+\frac{10}{y}=\frac{1}{2}(x+y)+(\frac{3}{2}x+\frac{6}{x})+(\frac{5}{2}y+\frac{10}{y})\)
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{3}{2}x+\frac{6}{x}\geq 2\sqrt{\frac{3}{2}x.\frac{6}{x}}=6(1)\)
\(\frac{5}{2}y+\frac{10}{y}\geq 2\sqrt{\frac{5}{2}y.\frac{10}{y}}=10(2)\)
\(\frac{1}{2}(x+y)\geq \frac{1}{2}.4=2(3)\) do $x+y\geq 4$
Từ \((1);(2);(3)\Rightarrow 2x+3y+\frac{6}{x}+\frac{10}{y}\geq 6+10+2=18\)(đpcm)
Dấu "=" xảy ra khi $x=y=2$.