Ầy dà giúp hộ bài corona nhớ "
Cho HBH ABCD . Qua D kẻ đường thẳng d bất kì cắt AC , AB , BC lần lượt tại M, N , K .
a) CM: \(\frac{1}{DN}+\frac{1}{DK}=\frac{1}{DM}\)
b) CK * AN ko phụ thuộc vị trí đường thẳng d.
Cho hình bình hành ABCD qua D kẻ đường thẳng D bất kì cắt AC, AB, BC lần lượt tại M,N,K. Chứng minh:
a, DM2=MN.MK
b, 1/DN+1/DK=1/DM
c, CK.AN không phụ thuộc vị trí của đường thẳng D
Giúp mình bài này với mình đang cần gấp
Bài 1: Cho hình thang ABCD (AB//CD) , M là trung điểm của DC, E là giao điểm của AM và BD, F là giao điểm của BM và AC.
a, Tính độ dài EF, biết AB=15cm, CD=24cm
b,EF cắt AD, BC lần lượt tại I và K. Chứng minh IE=EF=FK
Bài 2:Cho hình bình hành ABCD qua D kẻ đường thẳng D bất kì cắt AC, AB, BC lần lượt tại M,N,K. Chứng minh:
a, DM^2=MN.MK
b, \(\frac{1}{DN}+\frac{1}{DK}=\frac{1}{DM}\)
c, CK.AN không phụ thuộc vị trí của đường thẳng D
cho hình bình hành ABCD. một đường thẳng đi qua D cắt AC, AB, CB lần lượt tại M, N,K. Cm
a) MD2=MN.MK
b) \(\frac{1}{DN}+\frac{1}{DK}=\frac{1}{DM}\)
Bài 1 : cho hình bình hành ABCD , đường thẳng qua d cắt cạnh AC , AB và BC lần lượt ở M , N , C . chứng minh
a)DM2 = MN.NK
b) \(\frac{DM}{DN}+\frac{DM}{DK}=1\)
Bài 2 : Trong Tam giác ABC cân tại A vẽ đường phân giác BE cắt đường cao AD tại M . Tính BC biết \(\frac{MA}{MD}=\frac{10}{3}\)
và EA = 15 cm
Bài 1:
Cho tam giác ABC, G là trọng tâm của tam giác. Qua G kẻ đường thẳng d cắt AB, AC lần lượt tại P,Q. Chứng minh rằng đẳng thức \(\frac{BP}{AP}+\frac{CQ}{AQ}\)không phụ thuộc vào vị trí đường thẳng d.
Bài 2: Trên trung tuyến AD của tam giác ABC lấy điểm M. Qua M kẻ đường thẳng bất kì cắt các cạnh AB và AC lần lượt tại P và Q. Chứng minh rằng: \(\frac{AB}{AP}+\frac{AC}{AQ}=2.\frac{AD}{AM}\)
(Có lời giải nhé cảm ơn mọi người, ai giải đủ mình tích cho, hứa đấy)
Cho hình bình hành ABCD. Một đường thẳng đi qua D cắt AC,AB,BC theo thứ tự M,N,K.
a) DM^2=MN.MK
b)\(\frac{DM}{DN}+\frac{DM}{DK}=1\)
cho hình bình hành ABCD ,qua đỉnh D kẻ một đường thẳng cắt AC,AB,BC theo thứ tự tại M,N,K. chứng minh a, DM^2=MN*MK
b,DM/DN=DM/DK=1
Cho tam giác ABC có D là một điểm bất kì trên đường trung tuyến AM. Qua D kẻ đường thẳng xy cắt hai cạnh AB và AC lần lượt tại P và Q. Gọi H,I,K lần lượt là hình chiếu của A,B,C trên xy. Xác định vị trí của điểm D để \(AH=\frac{BI+CK}{2}\)