a, \(\left(x^3+8\right)-\left(x^2-4\right)=\left(x+2\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x+2\right)=\left(x+2\right)\left(x^2-2x+4-x+2\right)=\left(x+2\right)\left(x^2-3x+6\right)\)
a: Ta có: \(\left(x^3+8\right)-\left(x^2-4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)-\left(x+2\right)\left(x-2\right)\)
\(=\left(x+2\right)\left(x^2-2x+4-x+2\right)\)
\(=\left(x+2\right)\left(x^2-3x+6\right)\)
c: Ta có: \(25\left(4x-3\right)^2-16\left(5x+7\right)^2\)
\(=\left(20x-15\right)^2-\left(20x+28\right)^2\)
\(=\left(20x-15-20x-28\right)\left(20x-15+20x+28\right)\)
\(=-43\left(40x+13\right)\)