a)(x-3)(2y+1)=7
b*)xy+3x-7y=21
Bt hè
1 ) giải các phương trình và hệ phương trình sau :
a) \(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}+7=0\)
b) \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
ta có P=\(\frac{x^2}{\sqrt{xy+3x}}+...\ge\frac{\left(x+y+z\right)^2}{\sqrt{xy+3x}+...}=\frac{9}{\sqrt{xy+3x}+...}\)
mà \(\left(\sqrt{xy+3x}+...\right)^2\le3\left(xy+...+3x+...\right)\le3\left(3+9\right)=36\Rightarrow\sqrt{xy+3x}+...\le6\)
=>\(P\ge\frac{3}{2}\)
tính A = 3x + 2y + 5z và y = x - 3 , z = x - 4 . tính A theo x
1) TÌM CẶP SỐ NGUYÊN x,y thỏa mãn:
a/(2x-1)(y+2)=-10
b/(x+3)(2y+1)=14
2)Tìm x biết:2(x-2)+(-3)2 =6+3x
Cho a,b,c>0; a+b+c=3/4. Tìm min
\(M=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
f(x)=x-1/2y-3x+1
( x^2 + y^2 ) / xy đk x>= 2y; x,y dương?
ta có \(A=\frac{1}{x^3+y^3}+\frac{4}{xy}=\frac{1}{\left(x+y\right)\left(x^2-xy+y^2\right)}+\frac{4}{xy}=\frac{1}{x^2-xy+y^2}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}\)
áp dụng bất đẳng thức svác sơ ta có
\(\frac{1}{x^2-xy+y^2}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}\ge\frac{16}{x^2+y^2+2xy}=16\)
mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
=> \(\frac{1}{xy}\ge4\)
=> \(A\ge20\)
dấu = xảy ra <=> x=y=1/2