a) \(\sqrt{83-20\sqrt{6}}+\sqrt{62-20\sqrt{6}}\)
\(=\sqrt{\left(5\sqrt{3}-2\sqrt{2}\right)^2}+\sqrt{\left(5\sqrt{2}-2\sqrt{3}\right)^2}\)
\(=5\sqrt{3}-2\sqrt{2}+5\sqrt{2}-2\sqrt{3}\)
\(=3\sqrt{3}+3\sqrt{2}=3\left(\sqrt{3}+\sqrt{2}\right)\)
b) \(\sqrt{302-20\sqrt{6}}+\sqrt{203-20\sqrt{6}}\)
\(=\sqrt{\left(10\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(10\sqrt{2}-\sqrt{3}\right)^2}\)
\(=10\sqrt{3}-\sqrt{2}+10\sqrt{2}-\sqrt{3}\)
\(=9\sqrt{3}+9\sqrt{2}=9\left(\sqrt{3}+\sqrt{2}\right)\)
c) \(\sqrt{601-20\sqrt{6}}-\sqrt{154-20\sqrt{6}}\)
\(=\sqrt{\left(10\sqrt{6}-1\right)^2}-\sqrt{\left(5\sqrt{6}-2\right)^2}\)
\(=10\sqrt{6}-1-5\sqrt{6}+2\)
\(=5\sqrt{6}+1\)
(Chúc bạn học tốt và tíck cho mìk vs nhá!)