\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Vậy..........
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Vậy..........
So sánh \(\sqrt{17}+\sqrt{26}+1và\sqrt{99}\)
So sánh \(\sqrt{17}+\sqrt{26}+1và\sqrt{99}\)
So sánh \(\sqrt{17}+\sqrt{26}+1và\sqrt{99}\)
So sánh
a) \(\sqrt{17}+\sqrt{26}+1và\sqrt{99}\)
b) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}và10\)
So sánh:\(\sqrt{17}+\sqrt{26}+1\)và \(\sqrt{99}\)
So SáNh :\(\sqrt{17}+\sqrt{26}+1\)và \(\sqrt{99}\)
\(\sqrt{17}+\sqrt{26}+1và\sqrt{99}\)
b)chứng minh:\(\frac{1}{\sqrt{ }1}+\frac{1}{\sqrt{ }2}+\frac{1}{\sqrt{ }3}+...+\frac{1}{\sqrt{ }99}+\frac{1}{\sqrt{ }100}>10\)
c)cho:S=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)vàP=\(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\)tính \(\left(S-P\right)^{2016}\)
so sánh
\(\sqrt{17}+\sqrt{26}+1\)và \(\sqrt{99}\)
so sánh: \(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\)