Bài 1: Ta có: \(53^2-53\cdot6+3^2\)
\(=53^2-2\cdot53\cdot3+3^2\)
\(=\left(53-3\right)^2\)
\(=50^2=2500\)
Bài 2: Ta có: \(-x^2+x-33\)
\(=-\left(x^2-x+33\right)\)
\(=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{131}{4}\right)\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{131}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{131}{4}\le\frac{131}{4}< 0\forall x\)
hay \(-x^2+x-33< 0\forall x\)(đpcm)
Bài 3: Ta có: \(x^2+4x+33\)
\(=x^2+4x+4+29\)
\(=\left(x+2\right)^2+29\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+29\ge29>0\forall x\)
hay \(x^2+4x+33>0\forall x\)
Bài 4: Ta có: \(B=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\)
Ta có: \(\left(x+4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+4\right)^2-16\ge-16\forall x\)
Dấu '=' xảy ra khi x+4=0
hay x=-4
Vậy: Giá trị nhỏ nhất của biểu thức \(B=x^2+8x\) là -16 khi x=-4
Bài 5: Tìm x
Ta có: \(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-\left(25x^2-9\right)-30=0\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9-30=0\)
\(\Leftrightarrow10x-20=0\)
\(\Leftrightarrow10x=20\)
hay x=2
Vậy: x=2