Đặt B = \(\left(\frac{\left(a+3\sqrt{a}+1\right)\left(\sqrt{a}+1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+2\right)}{\left(\text{\sqrt{a}+2}\right)\left(a-1\right)}\right)\) ($\sqrt{ a}$ + 2 là căn a )
\(=\frac{a\sqrt{a}+a+3a+3\sqrt{a}+\sqrt{a}+1-a\sqrt{a}-2a-a-2\sqrt{a}}{\left(\sqrt{a}+2\right)\left(a-1\right)}\)
\(\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(a-1\right)}=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right)\left(a-1\right)}=\frac{\sqrt{a}+1}{a-1}\)(vì a - 1 = (căn a - 1 ) (căn a + 1 ) )
Dặt \(C=\frac{1}{\sqrt{a}+1}-\frac{1}{\sqrt{a}-1}=\frac{\sqrt{a}-1-\sqrt{a}-1}{a-1}=-\frac{2}{a-1}\)
A = B : C = \(\frac{\sqrt{a}+1}{a-1}:-\frac{2}{a-1}=\frac{\sqrt{a}+1}{a-1}\cdot\frac{a-1}{-2}=-\frac{\left(\sqrt{a}+1\right)}{2}\)