a) \(\left(5x+1\right)^2=\frac{36}{49}\)
\(\Rightarrow\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2=\left(\frac{-6}{7}\right)^2\)
\(\Rightarrow\hept{\begin{cases}5x+1=\frac{6}{7}\\5x+1=\frac{-6}{7}\end{cases}}\Rightarrow\hept{\begin{cases}5x=\frac{-1}{7}\\5x=\frac{-13}{7}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-1}{35}\\x=\frac{-13}{35}\end{cases}}}\)
b) \(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)
\(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}^2\right)^3\)
\(\left(x-\frac{2}{9}\right)^3=\left(\frac{4}{9}\right)^3\)
\(x-\frac{2}{9}=\frac{4}{9}\)
\(x=\frac{4}{9}+\frac{2}{9}\)
\(x=\frac{6}{9}=\frac{2}{3}\)
\(a.\left(5x+1\right)^2=\frac{36}{49}\)
\(\left(5x+1\right)^2=\frac{6^2}{7^2}\)
\(\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)
\(\Rightarrow5x+1=\frac{6}{7}\)
\(\Rightarrow5x=\frac{6}{7}-1\)
\(\Rightarrow5x=-\frac{1}{7}\)
\(\Rightarrow x=-\frac{1}{7}:5\)
\(\Rightarrow x=-\frac{1}{35}\)
Vậy \(x=-\frac{1}{35}\)
\(b\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right).^6\)
\(\left(x-\frac{2}{9}\right)^3=\frac{\left(2^2\right)^3}{\left(3^2\right)^3}\)
\(\left(x-\frac{2}{9}\right)^3=\frac{4^3}{9^3}\)
\(\left(x-\frac{2}{9}\right)^3=\left(\frac{4}{9}\right)^3\)
\(\Rightarrow x-\frac{2}{9}=\frac{4}{9}\)
\(\Rightarrow x=\frac{4}{9}+\frac{2}{9}\)
\(\Rightarrow x=\frac{6}{9}=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)