\(\frac{1}{\left(x+y\right)^2}\cdot\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^{\text{4}}}\cdot\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)\)
Giúp vs cần gấp
Rút gọn:
\(\frac{1}{\left(x+y\right)^3}\cdot\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\cdot\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(A,\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)=\frac{4x}{\left(x+1\right)^2}\)
\(B,\frac{2+x}{2-x}:\frac{4x^2}{4-4x+x^2}\cdot\left(\frac{2}{2-x}-\frac{4}{8+x^2}\cdot\frac{4-2x+x^2}{2-x}\right)=\frac{1}{2x}\)
\(C,\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right):\frac{2x+y}{x^2+2xy+y^2}\right]\cdot\frac{x-y}{3}=xy\)
Chứng minh đẳng thức ( tìm x)
mọi người giải dùm mình cảm ơn
CM các đẳng thức sau:
\(\left[\frac{x+2}{x+1}-\frac{4\cdot\left(y+1\right)}{y+2}\right]:\left[\frac{x^2\cdot\left(y+1\right)}{y+1}-\frac{y^2\cdot\left(x+2\right)}{y+2}\right]=\frac{1}{y-x}\)
Rút gọn: \(\frac{x^2}{\left(x+y\right)\cdot\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\cdot\left(1+x\right)}-\frac{x^2\cdot y^2}{\left(x+1\right)\cdot\left(1-y\right)}\)
Bài 1:Phân tích đa thức thành nhân tử
a) 2x4+3x3-9x2-3x2+2
b) \(a\cdot\left(b+c\right)\cdot\left(b^2-c^2\right)+b\cdot\left(a+c\right)\cdot\left(c^2-b^2\right)+c\cdot\left(a+b\right)\cdot\left(a^2-b^2\right)\)
Bài 2: Cho x-y=12. Tính A=x3-y3-36xy
Giúp mình nhanh nhé
Tính các tổng sau:
a,A=\(\frac{x^4-\left(x-1\right)^2}{\left(x^2+1\right)^2-x^2}+\frac{x^2-\left(x^2-1\right)^2}{x^2\cdot\left(x+1\right)^2-1}+\frac{x^2\cdot\left(x-1\right)^2-1}{x^4-\left(x+1\right)^2}\)
b,B=\(\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
Giúp mình với!
Làm giúp mình nha
\(a,\left(x-2\right)\cdot\left(x+2\right)\cdot\left(x^2-10\right)=72\)
\(b,\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+3\right)\cdot\left(x+4\right)\cdot\left(x+5\right)=40\)
\(c,\left(2x-5\right)^2=\left(4x+7\right)^2\)
\(d,\left(2x^2+3x-1\right)^2-5\cdot\left(2x^2+3x+3\right)+24=0\)
Tính nhanh:
M=\(\frac{z^5\cdot\left(x+y^2\right)\cdot\left(x^2-y^3\right)\cdot\left(x^2-y\right)}{x^2+y^2+z^2+1}\)với x=-4, y=16, z=-5