đẳng thức trái luôn luôn lớn hơn đẳng thức phải(nhờ bđt coossi) đấu = xảy ra <=> x=2 và y=-3
bạn xem lại cô-si đi áp dụng cosi sai roi
mình chỉ nói vậy thôi chứ bạn xem lại đi trình độ cầm cô-si của bạn không bằng mình đâu :) bạn dùng cô-si sai rồi
đẳng thức trái luôn luôn lớn hơn đẳng thức phải(nhờ bđt coossi) đấu = xảy ra <=> x=2 và y=-3
bạn xem lại cô-si đi áp dụng cosi sai roi
mình chỉ nói vậy thôi chứ bạn xem lại đi trình độ cầm cô-si của bạn không bằng mình đâu :) bạn dùng cô-si sai rồi
cho 2 số thực x,y thỏa mãn \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\) . tìm giá trị lớn nhất , giá trị nhỏ nhất của A =x+y
Tìm giá trị lớn nhất của A= \(\dfrac{\sqrt{z-1}}{z}+\dfrac{\sqrt{x-2}}{x}+\dfrac{\sqrt{y-3}}{y}\)
Bài 1:
Cho số thực x. Với \(x\ge1\).Tìm giá trị nhỏ nhất của biểu thức
\(A=\sqrt{x-2\sqrt{x-1}}+5.\sqrt{x+3-4.\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}\)
Bài 2:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(y=\frac{x^2}{x^2-5x+7}\)
Bài 3:
Cho hai số dương x,y thay đổi nhưng luôn thỏa mãn điều kiện \(\frac{2}{x}+\frac{3}{y}=6\)
Tìm giá trị nhỏ nhất của x+y
giúp mình với
cho các số dương x,y,z thỏa mãn \(x+y+z\le3\)
tìm giá trị lớn nhất của biểu thức: \(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
cho các số dương x, y, z thỏa mãn \(x+y+z\le3\) tìm giá trị lớn nhất của biểu thức:
\(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
giúp mình với
cho x+y+1=2 (\(\sqrt{x-z}\)+\(\sqrt{y+3}\)) Tìm giá trị lớn nhất của x+y
Rút gọn biểu thức: A=\(\frac{\sqrt{5}+3}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Tìm giá trị lớn nhất của biểu thức M=\(2x+\sqrt{5-x^2}\)
Cho x;y là các số thực thỏa mãn \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\).Tính N=\(x^2+y^2\)
Giúp mình nhanh với...mai sắp tạch rồi
cho các số dương x, y, z thoả mãn x+y+z nhỏ hơn hoặc bằng 3 tìm giá trị lớn nhất của biểu thức:
\(A=\sqrt{1+X^2}+\sqrt{1+Y^2}+\sqrt{1+Z^2}+2\left(\sqrt{X}+\sqrt{Y}+\sqrt{Z}\right)\)
Cho x,y là các số thực dương thỏa mãn x+y+xy=3 tìm các giá trị lớn nhất của biểu thức
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\)