(a\(^2\)+b\(^2\))(x\(^2\)+y\(^2\))≥(ax+by)\(^2\)
<=> a\(^2\)x\(^2\)+a\(^2\)y\(^2\)+b\(^2\)x\(^2\)+\(b^2\)y\(^2\)≥(ax)\(^2\)+(by)\(^2\)+2axby
<=>a\(^2\)x\(^2\)-a\(^2\)x\(^2\)+a\(^2\)y\(^2\)+b\(^2\)x\(^2\)+b\(^2\)y\(^2\)-b\(^2\)y\(^2\)-2axby≥0
<=>(ay)\(^2\)-2axby+(bx)\(^2\)≥0
<=>(ay-bx)\(^2\)≥0 ( luôn đúng )
Đẳng thức xảy ra khi và chỉ khi \(\dfrac{a}{x}\)=\(\dfrac{b}{y}\)